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Abstract 

Traditionally, logical truth has been taken as a necessary 

criterion for valid predication. As an alternative, a high 

probability criterion has been proposed. Yet, as long as this 

criterion makes use of a standard probability interpretation, 

it does not resolve the problem of inclusion. For instance, 

the sentence “ravens are black and they can fly” 

(conjunction) can never be more probable than “Ravens are 

black or they can fly (or both)” (inclusive disjunction), 

although it seems irrational that predication of the latter 

should be more justified than the former. Bayesian Logic 

(BL) formalizes a pattern-based probability measure for 

noisy-logical relations that rules out this problem, predicting 

an entire system of inclusion fallacies (von Sydow, 2009, in 

press). This proposal aims to uphold the idea of a rational  

probabilistic basis for predication, while accounting for the  

fact that extensional probability falls prey to several 

problems. Here this model is investigated using logical pro-

bability judgments after trial-by-trial learning tasks. The 

results differed from the predictions when modeled on the 

shown data, but corroborated BL quite well, when based on 

subjective frequency judgments. Hence, one needs to distin-

guish the mapping from objective to subjective frequencies 

and the one from subjective frequencies to subjective 

(pattern) probabilities. The latter was very well modeled by 

BL here. Additionally, a transfer and a frequency estimation 

task provide first evidence for the suggestion that people 

distinguish not only between logical patterns, but also 

between observed noise levels.  
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Predication & Narrow Norms of Probability 

Traditionally, logical truth and the absence of falsifying 
cases are taken as nessessary preconditions for a true pre-
dication of attributes along with their logical relation. Gen-

eral predications, concerned with propositions about classes 
of entities (e.g., ravens are black AND they can fly), are 
traditionally only taken to be true if all empirical cases con-
form to logically allowed (true) cases of a connectives truth-
table definition (see Table 1) (Frege, Russell, Whitehead, 
Wittgenstein, Popper).  

The logical truth criterion demands that the proposition 
hold deterministically. That is, in predicate logic, the 
sentence “R are B and F” would be interpreted as ∀r (B(r) ∧ 
F(r). Taking standard logics as general truth or adequacy 
criterion of predication, however, involves three 
fundamental problems: 

(1) The problem of exceptions: A sentence such as 
“ravens are black and they can fly” is falsified and refuted 
by a single evidence. However, even in this example, there 

are cases of albino ravens as well as ravens that cannot fly. 
Formal logics demands “zero tolerance” towards exceptions. 
Accordingly, “ravens are black and they can fly” would 
plainly be false. The only correct sentence (corresponding to 
a logical connective) would be “ravens are black or not, and 
they can fly or not” (logically referring to the “verum” 
B F). For formal purposes, such an understanding may 
sometimes be helpful, but clearly not as a general norm of 
predication. 
 
Table 1: Standard truth-table definitions of the conjunction 
A ∧ B, (binary) affirmation A, inclusive disjunction A ∨ B, 

and exclusive disjunction A >< B. 

  A ∧ B A  A ∨ B A >< B 

A B true true true false 
A Non-B false true true true 

Non-A B false false true true 
Non-A Non-B false false false false 

 
 (2) The problem of monotonicity: If predications should 

be derived inductively, the number of logical subclasses 
(cells in the truth-table) that need to be assumed to be true 
can only increase (and never decrease). In this sense, novel 
evidence can never rule out old evidence. If the first raven is 
white, even a million black ravens do not allow for the 
statement “ravens are black.” This problem of “inductive 
monotonicity” is roughly analogous to inferential 
monotonicity.  

(3) The problem of inclusion: Even if there are no 
exceptions to a predication, the extensional interpretation of 
logic “ravens are black and they can fly” logically entails 
that “ravens are black or they can fly” (B ∧ F) => (B ∨ F). 
Hence, for any situation in which one would use an AND-
predicate, one would be equally justified to use an OR-
predicate. Therefore, if one assumes that predication often 
aims at providing informative descriptions of whole 
situations, extensional logic seems not to be suited to such a 
task. The (extensional) truth-criterion does not penalize 
overgeneralization.  

If one interprets “ravens are black and they can fly” as 
P(B ∧ F|R), this may help to resolve the problems of excep-
tions and non-monotonicity (cf. Schurz, 2005). Despite a 
few albino ravens, the probability remains high. The current 
proposal aims to uphold the idea of a rational probabilistic 
basis for predication, while accounting for the fact that stan-
dard extensional probability continues to fall prey to the 
problem of inclusion. The inclusive disjunction, or the cited 
tautology, has an equally high probability than the plausible 
conjunction – or in fact a higher one, due to a few albino 
ravens. The classical conjunction fallacy problem (Tversky 
& Kahneman, 1983; Kahneman & Frederick, 2002), if based 
on frequency information, can be seen as a special case of 
this problem (e.g., Costello, 2005; Lagnardo & Shanks, 
2002;  cf. von Sydow, 2009, in press). The inclusion rule, in 
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the conjunction fallacy debate often formulated as the 
conjunctive rule P(B ∧ F) ≤ P(B), has been postulated to be 
the most simple and fundamental law of probability theory 
(Tversky & Kahneman, 1983). Likewise, non-standard 
accounts of probability (e.g., Dempster-Shafer belief 
functions, Cohen’s Baconian probabilities, or fuzzy logic) 
accept the conjunction rule (cf. Kahneman & Frederick, 
2002; Costello, 2005).  

In any case, despite several interesting modifying factors 
(Fiedler, 1988; Hilton, 1995; Gigerenzer, 1996; Hertwig & 
Gigerenzer, 1999; Mellers, Hertwig, & Kahneman, 2001; 
Sloman et al., 2003; Bonini et al., 2004; Wedell & Moro, 
2008), the phenomenon of the conjunction fallacy proved 
remarkably stable, even when one used frequency infor-
mation, ruled out a misunderstanding of hypothesis, and 
worked with clear set-inclusions (Lagnardo & Shanks, 
2002; Tentori et al., 2004; Sides et al., 2002; von Sydow, 
2007, 2008; von Sydow, 2007, 2008, 2009, in press). Even 
the “narrow norm” of the extensional conjunction rule itself 
has been called into question (note that, despite differences 
in other regards I follow Gigerenzer here [1996, cf. 2008]).   

A rational analysis provides us with a tool to determine 
the true rational task posed by a situation to an organism (cf. 
Anderson, 1990). According to the method we must first de-
termine the inferred goal, here the goal of an assertive use of 
predications whose probability is to be assessed. Pre-
dications, in my view, usually aim at providing a description 
of an overall situation in a single sentence (von Sydow, 
2009). Extensional probabilities, in contrast, are concerned 
with the extension of a specific set. One would need several 
probability judgments to characterize a full contingency 
table. Additonally, extensional probability judgments, as we 
have seen, are quite uninformative for evidence-based 
predication. P(B ∧ F) ≤ P(B ∧ (F ∨ non-F)) ≤ P(B ∨ F) ≤ 
P(B  F) or P(B ∧ non-F) ≤ P(B >< F) ≤ P(B ∨ F) ≤ P(B  
F) holds, irrespective of empirical evidence. This yields the 
absurd result that one always has to prefer the more general 
statement –  at best, the tautology; here, B  F.  

Previous accounts to explain frequency-based conjunction 
fallacies have postulated that people falsely use no probabi-
lity measure. Representativeness in a first step evokes a pro-
totype (a representative exemplar), and in a second judges 
the similarity between description and prototypical exem-
plar (Kahneman & Frederick, 2002). Gigerenzer (1996, 
2008) has criticized this concept of being vague. Many other 
quantitative accounts, however, have been proposed, 
replacing the target property of probability by another 
measure, such as inverse probability (cf. Wolford, 1991; 
Fisk, 1996) or confirmation (increase of probability: 
Lagnado & Shanks, 2002; Sides et al., 2002; cf. Crupi, 
Fitelson, & Tentori, 2008).  

Bayesian Inductive Pattern Logic 

Bayesian Inductive Pattern Logic (Bayesian Logic, for 
short) aims to take the goals of predication seriously and to 
introduce a pattern-based notion of probability (von Sydow, 
2007, 2009). Probability is generally taken to be a poly-
semous notion (Hertwig & Gigerenzer, 1998; cf. Fiedler, 
1988; Wolford, 1991; Fisk, 1996; Sides et al., 2002). Even 
probability judgments about propositions may demand 

different formalizations. Bayesian Logic is a novel, in-
ductive model concerning probabilities of noisy-logical rela-
tionships. Here we will assess probabilities, but this 
specification of probabilities is suitable for a high-
probability criterion for predication. These probabilities thus 
should relate to human probability judgments about logical 
predications, at least when one is concerned with an overall 
characterisation of a situation (a pattern). Although a 
standard Bayesian account alone does not resolve the 
problem of inclusion (e.g., Fisk, 1996), BL contributes to the 
renaissance of Bayesian models on the computational level in 
the cognitive sciences (cf. Oaksford & Chater, 2007; 
Tenenbaum & Griffiths, 2001, Kruschke, 2008; cf. von 
Sydow, in press, for demarcation from other models). BL 
provides posterior probabilities for noisy-logical hypotheses 
(again specifying patterns of probabilities), given a data 
pattern D in a 2×2 contingency matrix. Technically, it 
integrates over different possible noise-levels to achieve a 
measure for the probability of different logical hypotheses. 
Although the method may be useful for machine-learning, 
the psychological question addressed in this paper is: Does 
this formal model approximate a psychologically important 
notion of probability in trial-by-trial learning contexts?  

BL is based on the Kolmogorov axioms of probability 
(including the axiom of additivity), applicable only to the 
inclusion rule on the level of alternative pattern hypotheses 
rather than on the usual data of subsets. In what follows, the 

main steps of the model are sketched, minus the technical 
details (cf. von Sydow, 2007, 2009, in press): 
Figure 1: Contingency table of data, with the three 
underlying hypotheses regarding the logically described 
capacity that may have produced the data. 
 

(1) BL assumes that predications that describe situations 
are normally concerned with propensities, dispositions, or 
capacities that may have produced 
the actual observations. Such pre-
dications are explanatory con-
structs underlying the data. Figure 
1 represents observed frequencies 
in a contingency table, as well as 
three possible hypotheses about 
underlying probability patterns 
that can be described in logical 
terms. For plain relative frequen-
cies, sample size would be ir-
relevant. According to BL, in con-
trast, one piece of evidence, for 
instance, confirming properties A 
and B, makes the observation “Xs 
are A and B” less probable than 
that of a hundred other such cases.  

(2) The underlying patterns are 
treated as alternative hypotheses 
(even if they overlap or include 

A ∧ B 

A  

B  

A><B 

A ∨ B 

R = 0 R = .3 R = .6 

Figure 2: Illustration of 
of PTs with noise-

levels r. Dark vs. bright 
cells represent high vs. 

low probability. 



each other). BL provides probabilities for logical patterns of 
probabilities as a whole.  

(3) A truth-table of a logical connective (cf. Table 1) 
specifies which cases are allowed or forbidden, but does not 
specify the probability of allowed cases. Here truth tables 
can be re-conceived as “logical probability tables” (PTs) via 
the assumption of idealization. We formalzse how ideal 
logical explanations can account for actual observations. 
Correspondingly, the cell probabilities of what is logically 
true (in terms of some logical proposition) are assumed to 
be equally probable (cf. Johnson-Laird, Legrenzi, Girotto, 
Legrenzi, & Caverni, 1999). Note that the concern is still 
with deterministic relationships (no randomness or noise [r 
= 0]). The cell probability of a true cell is simply 1 divided 
by the number of true cells (resulting for instance in tA∧B = 
1, tA = 50, and tA∨B = .33). A false cell has the generative 
probability of 0 (zero).  

(4) Crucially, the underlying logical pattern probabilities 
need to be formulated in a non-deterministic way – other-
wise the tautology would remain most probable in nearly all 
cases (even when assuming only seldom exceptions). The 
observed data in Figure 1 cannot be generated by a 
deterministic  A-AND-not-B pattern. Of the three shown 
alternative hypotheses, only the “A or B or both” hypothesis 
would apply. As outlined above, we would thus normally be 
restricted to the use of tautological predicates. Adding the 
assumption of uncertainty to these ideal logical probability 
tables (cf. Figure 2) allows the formulation of noisy-logical 
relationships for diverse noise levels. For each logical PT, 
different degrees of randomness or noise (0 < r < 1) are 
shown (for technical details, see von Sydow, 2007, 2008, 
2009, in press). Depending on plausible noise-levels, 
different explanatory structures may best explain the data.  

(5) Further model steps. The further model steps involve 
standard Bayesian statistics and follow from the non-
standard assumptions about logical probabilities (cf. von 
Sydow, in press). First, the likelihood of the obtained data D, 
given any generative connective-noise hypotheses (P(D|con-
nective-noise hypothesisi)) must be specified by a 
multinomial distribution. Second, Bayes’ theorem is used to 
calculate the posterior probabilities of the hypotheses, given 
the data: P(connective-noise hypothesisi|D). In order to 
calculate the overall probability of a logical hypothesis, 
independent of noise levels r, one may sum up the posterior 
probabilities over all noise levels.  

The resulting value is the probability, P(A oi B|D), for 
each of the 16 dyadic logical connectives (oi is a general 
placeholder for connectives). The probabilities of different 
hypotheses are weighted by the posterior probabilities of the 
noise-levels for each hypothesis (cf. Figure 3). As an 
illustration, the results for the data vector [7, 3, 2, 0] show 
that for low noise-levels (or if for noise-levels one uses, 
rather than a flat prior, one that favors low noise levels) the 
inclusive disjunction is clearly the most probable (the 
normative extensional answer). Given preferences for other 
noise-levels, other hypotheses would become more probable 
(although extensionally they are always less probable). This 
nicely illustrates the results of BL (although we will 
investigate another aspects of noise-levels here). 

In contrast to other measures that explain the occurrence 

of conjunction fallacies, the resulting measure still concerns 
a probability – the probability that the situation corresponds 
to a certain pattern describable in a noisy-logical way, given 
the observed frequency data. This interpretation of proba-
bility, however, obviously differs from standard probabi-
lities. Extensional probabilities, PE(A oi B|D), are concerned 
with the relative frequency of data in a logically specified 
subset. Logical pattern probabilities, PP(A oi B|D), as 
defined by Bayesian Logic, are concerned with the pro-
bability of underlying explanatory logical probability 
patterns, given the data. Thus people who are asked for the 
probability of the sentence “X are A and B” and who answer 
PP(A ∧ B|X) rather than PE(A ∧ B|X) do nothing wrong, 
despite the much simpler intentions of the experiment. 
Psychologically, it is claimed that people who assess overall 
situations normally use a probability measure roughly 
approximating noisy-logical pattern probabilities, 
technically specified by BL.  

Figure 3. Illustration of pattern probabilities of logical 
hypotheses across 11 modelled noise levels r for the given 
data vector [7, 3, 2, 0] (corresponding to the cells of a 2*2 
contingence matrix). 
 

Previous tests of this theory have shown that conjunction 
fallacies do occur in specified situations, even if one uses 
frequency information, clear set inclusion and rating scales. 
Moreover, predicted effects of double conjunction fallacies, 
negations, sample size and pattern sensitivity have been 
corroborated (cf. von Sydow, 2007, 2008, in press). Fur-
thermore, BL has suggested a generalization of the pheno-
menon of conjunction fallacies (and disjunction fallacies) to 
other logical inclusion fallacies using overview formats (von 
Sydow, 2009).  

It will be investigated here whether BL is applicable in 
trial-by-trial learning situations as well. Alternatively, this 
particularly “natural” frequency format may lead partici-
pants to use extensional probabilities. Here we checked the 
subjective frequency representations of the participants, and 
predicted that they were aware of exceptions even when 
committing inclusion fallacies. Since it is plausible that 
people do not keep full track of the actual data, but rather re-
construct the input by using the main representational para-
meters of their representational model, this addresses the 
question of representation per se. It is suggested that people 
represent abstract logical propositions about logical combi-
nations of properties and that they have a rough idea of 
noise-levels. Additionally, it is predicted that people do not 



register small differences between cells. Finally, although 
the sample sizes vary substantially, BL shows that in all 
cases the sample size is large enough to provide participants 
with subjectively plausible hypotheses, so that ultimately 
the sample size is unimportant. Hence it is predicted that 
participants will strongly underestimate differences in set 
size. Finally, we use transfer tasks to investigate whether 
participants transfer the logical connectives (and correspon-
ding inclusion fallacies) and noise-levels within situations. 

Experiment 

Method 

Participants 112 students from the University of 
Göttingen participated voluntarily in the experiment, 
receiving either course-credit or 5 Euros as recompense.  

Procedure and Materials The computer-based 
experiment involved a learning phase (Phase 1) and several 
subsequent tasks: a completion-transfer task (Phase 2), a 
probability-judgments task (Phase 3),  and a frequency-
estimation task (Phase 4). 

The study employed a scenario resembling, in some 
aspects, the so-called Linda task (Kahneman & Tversky, 
1983). Conjunction fallacies in the Linda-task involved 
judging P(Linda is a feminist and a bank teller) > P(Linda is 
a bank teller), after Linda has been described as a feminist. 
We employed material that allowed use of the same 
attributes, while replacing “Linda” by “graduates of the 
Linda school” (i.e., frequency-based instead of single-event 
probability estimation). At the outset, there was no mention 
of specific logical hypotheses sought; rather, students were 
merely informed that they would be answering questions 
about the schools and the attributes mentioned.   

Phase 1 involved six learning-steps, with trial-by-trial 
information, about graduates of six schools (Table 2). These 
schools, divided into two groups, were supported by either a 
workers’ foundation (in the example shown: Linda, Burga, 
and Rike Schools–Type 1) or a Protestant women’s 
organization (Maria, Magda, and Johanna Schools–Type 2). 
Participants were randomly assigned to four conditions: low 
vs. high noise, crossed with two other conditions counterba-
lancing the school-types. For each “condition,” the order of 
schools was also random. For each school, participants were 
shown data on several graduates, again in random order.  

 

Table 2: Frequencies for conditions of high and low noise 
Numbers concern the four cells: f(A & B); f(¬A & B); f(A & 
¬B); and f(¬A & ¬B). 

School Low noise High noise Trials 

Linda 18;1;0;0 12;3;2;2 19 
Burga 22;1;2;1 12;4;6;4 26 
Rike 32;3;3;2 22;7;6;5 40 
Maria  0;9;9;1  3;7;7;2 19 
Magda 1;12;12;1 3;9;9;5 26 
Johanna 2;17;20;1 7;13;15;5 40 

 

Table 2 depicts the frequencies in the high- and low-noise 
conditions for each school. For each graduate, participants 
were told whether she was a feminist (or not) and whether 
she was a bank teller (or not)— by symbols, crossed-out or 

left intact. For the counterbalancing condition depicted in 
Table 2, an AND predication is predicted for the worker 
school-type (the first three listed), and an EITHER-OR 
predication for the Protestant school-type. Note that even in 
low-noise schools there are exceptions to the predicted 
hypotheses; thus, extensionally, other hypotheses should be 
estimated to be equally if not more probable.  (Other 
theories of CFs do not specify predictions for exclusive vs. 
inclusive disjunctions).  

In Phase 2, two further schools were introduced: Selma (a 
Type 1 school) and Christina (a Type 2 school). Participants 
were informed that, due to computer problems, only partial 
evidence would be available. Furthermore, for each school 
there were two variants: in the “cell-a” version, participants 
were given information only on the number of graduates in 
the a-cell of the contingency table (f(F & B) = 11), with the 
other fields empty. In the “cell-d” version, the number of 
graduates were given in the d-cell alone (f(¬F & ¬B) = 3).  
Participants were randomly assigned to one of these variants 
for one school-type and presented to the other variant for the 
other type. In both cases they were to supply the missing 
information (completion-transfer task). 

In Phase 3 (probability-judgment task), participants deter-
mined which of five hypotheses held “most probable” for 
each school-type: “The graduates of the X-Schools were 
generally feminists (whether bank tellers or not)”; “bank 
tellers (whether feminists or not)”; “feminists and at the 

same time bank tellers”; “feminists and at the same time no 
bank tellers”; “either bank tellers or feminists”; or 
“feminists who are no bank tellers, or bank tellers who are 
no feminists, or also feminists and at the same time bank 

tellers.” The formulation “and at the same time” was used 
to rule out CFs based on non-conjunctive meanings of the 
word “and.”  

In Phase 4 (frequency-estimation task), participants 
reproduced “the samples seen” (the observed frequencies) 
for all six schools, using labelled contingency tables. 

Results 

Table 3: Percentage and number of hypotheses selected as 
most probable in the different school-types (collapsed over 

counterbalancing conditions) and noise  conditions. 

 

C1a AND 
schools, 

low noise 

C2a AND 
schools, 

high noise 

C1b XOR 
schools, 

low noise 

C2b XOR 
schools, 

high noise 

F 0 % (0) 13 % (7) 4 % (2) 7 % (4) 
B 5 % (3) 16 % (9) 5 % (3) 7 % (4) 

F ∧ B 79% (44) 39 % (22) 5 % (3) 13 % (7) 
F ∧ ¬B 0 % (0) 2 % (1) 2 % (1) 2 % (1) 
F >< B 4 % (2) 2 % (1) 66 % (37) 45 % (25) 
F ∨ B 13 % (7) 29 % (16) 18 % (10) 27 % (15) 

 
Table 3 shows the main results for the probability-judgment 
task for the two school-types (recorded as AND vs. XOR 
school-types) and the two noise-conditions. Both display 
inclusion “fallacies”; that is, using extensional probabilities, 
it would hold that PE(F), PE(B) and PE(F ∨ B) are not only 
equal to but in fact larger than PE(F ∧ B). Similarly, PE(F 
>< B) < PE(F ∨ B). Nevertheless, the results show a domi-
nant proportion of the hypotheses predicted as most 



probable deviating from this norm. The occurrence of these 
selections can be shown to be clearly above chance-level 
and to occur in higher proportions than in alternative 
conditions (C1a and C2a vs. C1b and C2b, cf. Table 3). Yet, 
the proportion of predicted answers was higher in the low-
noise than in the high-noise conditions (C1a vs. C2a, χ

2
(3, 

112) = 17.86, p < .001; C1b vs. C2b, χ
2
(3, 112) = 5.20, p < 

.05). Interestingly, the high-noise condition evoked a more 
frequent selection of inclusive disjunctions. Although this is 
the extensionally predicted answer, its cause may lie in 
misrepresentations of subjective frequencies. A tendency to 
the middle in high-noise conditions may more more easily 
lead to OR-predications, even if the pattern probabilities are 
than fully based on BL. (We will return to this later.) 

In the completion-transfer task, the overall results did not 
meet our predications closely, particularly in the high-noise 
condition (note that space prevents their presentation here). 
Nevertheless, when focusing on the main group of partici-
pants which checked off the predicted hypothesis in the each 
probability-judgment task respectively (Table 3), Table 4 
reflects the predicted results quite closely. That is, many 
participants transferred both logical patterns and noise 
levels. These results are ordinally fully consistent with the 
predictions (based on average modal noise-levels resulting 
from the observed data in the corresponding learning-
phases). Additionally, the results suggest that participants 
were well aware of the existence of exceptions before pro-
ceeding to the probability-judgment task, even in the low-
noise conditions. 

Next, Table 5, presents the mean estimates of subjective 
frequencies, once again for those subjects who selected the 
predicted results in the probability-judgment task, and 
compares this to the frequencies observed. It becomes ap-
parent that the participants’ observations reflected both 
noise levels and logical patterns very well. Moreover, the 
presence of logical inclusion “fallacies” cannot be dismissed 
by claiming that participants were unable to indicate exten-
sions or were unaware of exceptions. Participants apparently 
had little difficulty representing patterns that violated the 
causal Markov condition and conditional independence of 
class-attributes which may be represented causally (Rehder, 
2003; cf. von Sydow, et al., 2010).  

Additionally, the results strongly corroborate the predi-
ction that participants are virtually unaware of the substan-
tial difference in sample-sizes between schools. Participants 
did also not distinguish between zero observations and low 
frequency observations, although this would be an essential 
difference from a falsificationist or logicist perspective. 

 
Table 5: Mean estimated frequencies and observed fre-

quencies for low-noise (�) and high-noise (�) conditions, 
schools, and the four cells (a, b, c, d) of a contingency table 
(collapsed over counterbalancing variables), conditional on 

the predicted answers in the probability-judgment task 

 Estimated frequencies Observed frequencies 
� A b c d Nest a b c d Nobs 

Linda  19 3 3 3 28 18 1 0 0 19 
Burga 18 4 4 2 28 22 1 2 1 26 
Rike 20 4 4 3 31 32 3 3 2 40 
Maria 3 11 11 3 28 0 9  9 1 19 
Magda 4 11 11 3 29 1 12 12 1 26 
Johan. 3 12 13 3 32 2 17 20 1 40 
�           

Linda 12 6 5 4 26 12 3 2 2 19 
Burga 10 5 5 4 24 12 4 6 4 26 
Rike 11 5 6 4 27 22 7 6 5 40 
Maria 5 7 8 5 26 3 7 7 2 19 
Magda 5 8 8 5 26 3 9 9 5 26 
Johan. 6 9 7 5 26 7 13 15 5 40 

Note: For the first three schools, N = 40 (low noise) and N = 
25 (high noise); for the last three, N = 41 (low noise) and N 

= 22 (high noise) 
 
Table 6: Mean and SE of estimated frequencies for those 
who selected F ∨ B in the probability-judgment task 

(collapsed over conditions and counterbalancing variables) 

 Mean SE      
� a b c d Nest a b c d Nobs 

Linda 8 7 7 4 27 1.0 1.0 1.0 0.6 19 
Burga 6 7 8 4 27 1.0 0.9 0.9 0.6 26 
Rike 9 9 9 5 34 1.5 1.3 1.3 0.9 40 
Maria 8 7 6 3 26 1.0 1.2 0.8 0.4 19 
Magda 8 7 6 4 24 1.0 0.9 0.8 0.4 26 
Johan. 11 7 7 4 29 1.8 0.7 0.8 0.4 40 

Note: For all schools, N = 24. 

Table 4: Average (and standard error) of the added cell-frequencies and the model-predictions (rounded) for each cell, 
condition, and the d-cell (�) and a-cell (�) completion tasks. Only the shown frequencies are in italics.  

�  AND, low noise  AND, high noise  XOR, low noise  XOR, high noise  

Cells  Mean (SE)  Pred.  Mean  (SE)  Pred.  Mean  (SE)  Pred.  Mean  (SE)  Pred.  

F ∧ B  29.1 (4.6)  50  11.5 (2.5)  10   4.3 (1.0)  3   5.3 (0.8)  3  
F ∧ ¬B   6.5 (0.9)  3   5.8 (1.1)  3  11.6 (1.3)  25   7.8 (0.7)  10  

¬F ∧ B   7.7 (1.8)  3   5.9 (0.7)  3  10.8 (1.3)  25   7.8 (0.7)  10  

¬F ∧ ¬B  3; N = 32  3  3; N = 10  3  3; N = 18  3  3; N = 11  3  

 

�  AND, low noise  AND, high noise  XOR, low noise  XOR, high noise  

Cells  Mean (SE)  Pred.  Mean  (SE)  Pred.  Mean  (SE)  Pred.  Mean  (SE)  Pred.  

F ∧ B  11; N = 21  11  11; N = 12  11  11; N = 19  11  11; N = 10  11  
F ∧ ¬B   3.3 (0.6)  1   7.9 (1.5)  5  25.0 (5.3)  50  16.0 (3.0)  30  
¬F ∧ B   2.8 (0.4)  1   7.4 (1.1)  5  26.3 (4.8)  50  13.3 (2.7)  30  

¬F ∧ ¬B   2.1 (0.4)  1   5.2 (0.6)  5   7.9 (1.4)  11     9.0 (2.3)  11  



Finally, Table 6 investigates the largest group deviating 
from the predictions in the probability-rating task. Here it is 
assessed whether participants who adopted the extensionally 
correct solution in the probability-rating task (overall 21% 
selecting inclusive-disjunctions “F ∨ B”) indeed adopted an 
extensional strategy; also whether their selection could be 
due to initially misrepresenting frequencies, then applying 
pattern-probabilities later. Notably, Bayes Logic predicts the 
selection of inclusive disjunctions as most probable for the 
averages in all schools—a remarkable statistic, since most 
participants who selected the extensionally correct solution 
in fact misrepresented the frequencies, although their 
strategy was fully coherent with BL.  

Discussion 

The results corroborate that people use kinds of pattern 
probabilities and produce inclusion fallacies in line with BL. 
In the study, these pattern probabilities were exercised 
despite awareness of large numbers of exceptions. This 
became clear form frequency estimations. Participants 
distinguished logical patterns and noise levels in trial-by-
trial tasks. Paradoxically, those who apparently adopted a 
“correct” extensional strategy in fact misrepresented the 
data—apparently employing pattern probability as well.   

Some misrepresentations may have arisen based on the 
assumption that the two properties F and B are normally 
conditionally independent, as suggested by a common-cause 
interpretation of properties (see Bayes nets formalism: cf. 
Rehder, 2003). Nevertheless, despite the use of a learning-
task, many participants were well able to represent different 
interaction patterns between attributes on the level of both 
frequency judgments and (pattern) probability-judgments. 
Additionally, they could distinguish noise-levels but did not 
represent sample-size information very well. The ability to 
learn noisy logical interaction-patterns, including noisy 
XOR relations, may be explained by the fact that the task 
concerned merely dyadic property structures (two attri-
butes). Interestingly, people could learn these relations, even 
with quite noisy data. Ultimately, however, it was only the 
distinction between subjective and objective frequency re-
presentation that permitted the detection of different sources 
of “error.”  

One question to be addressed by future research, then, is 
whether adequate represention of noisy-logical patterns, 
with corresponding rational probability-judgments in line 
with Bayes Logic is obtainable in more complex settings as 
well. Another question is whether the adequate or in-
adequate representation of subjective frequencies is again 
mediated by propositional representations or not.  
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